长方体的体积教学设计

时间:2024-10-31 22:18:41
长方体的体积教学设计

长方体的体积教学设计

作为一名教师,时常需要用到教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。一份好的教学设计是什么样子的呢?以下是小编为大家整理的长方体的体积教学设计,仅供参考,希望能够帮助到大家。

长方体的体积教学设计1

教学内容:

推导长正方体的体积计算方法

教学目标:

1、使学生理解长方体和正方体体积公式的推导,能运用公式进行计算。

2、培养学生空间和空间想象能力。

教学重点:

长正方体体积公式的推导。

教学难点:运用公式计算。

教学设计:

一、出示课题,学习目标

理解长方体和正方体体积公式的推导,能运用公式进行计算。

二、出示自学指导

认真看课本观察:每排个数、排数、层数与体积有什么关系?如何计算长方体的体积?

三、学生看书,自学

四、效果检测

如何计算长方体的体积?

板书:长方体体积=长×宽×高

字母公式:V=abh

五、练习

1、一个长方体,长7厘米,宽4厘米,高3厘米,它的面积是多少?

根据长方体和正方体的关系,你能想出正方体的体积怎样计算吗?

正方体体积=棱长×棱长×棱长V=aaa=a3读作a的立方。

2、一块正方体的石料,棱长是6分米,这块石料的体积是多少立方分米?

请同学们摆一个体积是24立方厘米的长方体,摆后说一说长、宽、高各是几厘米?

长方体体积=长×宽×高提问:长方体的长、宽、高不同,体积相同这是为什么?

六、小结:

怎样计算长、正方体的体积?计算长方体和正方体的体积有没有其他的方法?这个问题我们下节课研究。

长方体的体积教学设计2

教学内容:

教科书第32~34页,长方体、正方体体积计算公式的推导,例1、例2及相应的“做一做”.练习七的第4~7题.

教学目的:

1.使学生经历长方体、正方体体积计算公式的推导过程,在具体情境中发现规律,理解和掌握长方体、正方体的体积计算公式.并能正确运用公式进行计算.

2.通过推导公式的实践活动,发展学生的空间想象,培养学生归纳、类比、进行逻辑推理的能力.

3.使学生初步会运用长方体、正方体体积计算的知识,解决有关的简单实际问题.

教具、学具准备

1.教师准备:多媒体课件.(复习题示图,推导长方体体积公式的示意图)

2.学生准备:①每人准备1立方厘米的小方块若干.②每个学习组准备一个长8厘米、宽5厘米、高3厘米的长方体模型,一个棱长8厘米的正方体模型.

教学过程:

一、复习引入

1.下面图中各是什么计量单位?它们之间有联系吗?

问:除了立方厘米,还有那些体积单位?

2.问:什么是物体的体积?

(物体所占空间的大小叫做它的体积)

3.下面的图形都是用棱长1厘米的小正方体拼成的,它们的体积各是多少?你是怎样数出来的?

问:需要一个一个的数吗?有没有简单方便的数法?

(只要数出每层长有几个,宽有几个,算出一层几个,再数有几层。)

4.完成练一练 1、2。

二、学习新课

1.探究长方体体积计算方法,推导公式.

(1) 小组合作,用棱长1厘米的小正方体拼成长方体,把每次拼的情况记录在下面的表里.

用小正方体个数

长方体的体积

(立方厘米)

长方体的棱长(厘米)

(2)汇报,师板书填表。

(3)讨论:通过拼摆,你发现了什么?

长方体所含体积单位的数量与它的长、宽、高有什么关系?

(4)尝试:根据刚才的发现,试一试算出发给各组的长方体的体积.想一想,要先做什么?

各组试算后,汇报计算方法:

先量长方体的长、宽、高.(长8厘米、宽5厘米、高3厘米)

8×5×3=120(立方厘米)

(5)归纳:通过上面的实验,你得出什么结论?你能归纳出长方体的体积计算公式吗?

教师根据学生发言归纳并板书:

长方体所含体积单位的个数等于长、宽、高的乘积.

长方体的体积=长×宽×高

V=abh

2.教学例1

(1) 出示

(2) 生试做

(3) 集体订正

3.练习

21页 第4题

4.教学例2

出示,生试做

总结公式

5.练习

22页,第6题

三.巩固练习

补充练习

1.求下列各长方体的体积

(1) 长10厘米,宽8厘米,高3厘米

(2) 长2.5米,宽1.2米,高0.4米

2.求下列各正方体的体积

(1) 棱长8厘米

(2) 棱长0.5分米

3.一块长方体石料长3分米,宽2分米,高5分米。已知每立方米石料重2.7千克,这块石料重多少千克?

4.一个长方体形状的食品盒,长30厘米,宽20厘米,高18厘米。做这个食品盒至少需要硬纸板多少平方厘米?这个食品盒的体积是多少立方厘米?

四.总结

今天学习了什么?

五.课堂作业

21页第5题,22页第7题。

板书设计:

长方体、正方体的体积计算

长方体 正方体

长 宽 高 长、宽、高相等

8厘米 5厘米 3厘米 (棱长)

8×5×3=120

长方体的体积=长×宽×高 正方体的体积=棱长×棱长×棱长

V=abh V=a3

长方体的体积教学设计3

长方体的体积计算这一内容是在学生认识了长方体(正方体)的体积的概念,长方体(正方体)的体积:立方米、立方厘米、立方分米的基础上学习的。通过这一节课的学习,可以帮助学生在今后的生产和生活中实际测量和计算一些物体的体积,解决一些实际问题,进一步体会到知识来源于实践、用于实践的道理,学习一些研究问题的方法。并且对学生空间观念的形成有着重要的意义。听了叶老师执教的《长方体的体积》一课,深受启发。我认为主要有以下几方面的亮点:

一、重视引导学生经历知识的探究过程。

究竟长方体的体积 ……此处隐藏13186个字……组准备1cm的正方体和实验记录单。

[教学过程]

一、创设情境,导入新课

谈话:上节课,我们已经认识了体积和体积单位。今天,老师带来了一个用1cm的小正方体摆成的长方体(出示长4cm、宽3cm、高2cm的长方体模型),你有办法知道这个长方体的体积是多少立方厘米吗?

明确:要知道一个物体的体积,就要看这个物体中包含多少个体积单位。

演示:按长方体模型的长、宽、高各含有的小正方体个数,算出长方体的体积)

揭题:刚才,老师的这个长方体模型是用1立方厘米的小正方体摆成的,但生活中有很多长方体或正方体的物体是不能分割的。譬如,这个长方体的包装盒(出示),它的体积又有什么办法知道呢?这节课,我们一起来研究长方体和正方体体积的计算方法。(板书课题)

[设计意图:通过数一个长方体中含有的1cm小正方体的个数,使学生进一步理解求一个物体的体积,就是求这个物体包含的体积单位的个数。同时也为后面有序地数出小正方体的个数作一些孕伏。]

二、操作探究,发现规律

启发:在三年级,我们学过长方形面积,还记得是怎样推导长方形面积公式的吗?

学生回忆后,电脑演示推导长方形面积公式的过程。

出示长方体直观图,讨论:你认为,长方体的体积可能与它的什么有关?我们可以用怎样的方法研究长方体的体积?

学生可能想到长方体的体积与它的长、宽、高有关;可以把长方体分割成若干个棱长1厘米、1分米或1米的正方体,长方体中含有体积单位的个数就是它的体积。

谈话:同学们的想法有没有道理呢?我们来看大屏幕,(多媒体演示)我们来想象一下:如果一个长方体的长增加或缩短,它的体积会怎样?如果改变它的宽或者高,体积会发生怎样的变化?

谈话:看来,同学们的猜想确实有道理。要研究长方体的体积与它的长、宽、高到底有什么关系,我们需要一些长方体作为研究对象。下面,我们一起来摆出一些长方体。

明确活动要求:

(1)同桌合作,用若干个1cm的正方体任意摆出4个不同的长方体并编上序号。

(2)观察摆出的长方体的长、宽、高,所用小正方体的个数,以及它们的体积各是多少,完成记录表。

(3)填完表格后,同桌核对数据,并交流自己的发现。

学生按要求操作、交流,教师巡视。

组织反馈。(指名汇报收集到的数据,并以其中的一个长方体为例,说说怎样看出它的长、宽、高的厘米数的。正方体的个数又是怎样数的,摆出的长方体的体积是多少,根据表中数据,自己有什么发现。)

板书:长方体的体积=长×宽×高。

启发:同学们通过用1cm的小正方体摆长方体的活动,发现了长方体体积等于它长、宽、高的乘积。是不是所有的长方体的体积都是它长、宽、高的乘积呢?这就需要我们进一步验证。

[设计意图:引导学生由探索长方形面积的经验,通过类比把探索平面图形面积的方法迁移到立体图形中来,既有利于培养学生初步的推理能力,也是具体的学习方法的指导;用1cm的小正方体摆长方体的操作,旨在引导学生通过操作和交流,初步发现长方体体积与它的长、宽、高的关系,并在这一过程中,培养动手操作能力,发展数学思考,感悟归纳的思想方法。]

三、再次探索,验证规律

出示4×1×1的长方体图,谈话:这是一个长4cm、宽1cm、高1cm的长方体,你知道它的体积是多少吗?

学生可能想到用4个1cm的小正方体摆成一排正好可以得到这个长方体,它的体积是4cm;也可能用“4×1×1”算出它的体积。

根据学生的回答在长方体上画出相应的分割线,确认这个长方体的体积是4cm。(见图1)

出示4×3×1的长方体图,谈话:这个长方体的长、宽、高分别是几cm?如果不用1cm的小正方体,你能想象出这个长方体中含有多少个1cm的小正方体吗?自己先在长方体上画一画,再和同学交流。

提问:这个长方体的体积是多少?你是怎样想的?(根据学生的回答出示图2)

明确:在这个长方体中,沿着长一排可以摆4个1cm的小正方体,沿着宽可以摆3排,所以,这个长方体的体积可以用“4×3×1”来计算。

出示4×3×2的长方体图,谈话:我们再来看这个长方体,它的长、宽、高分别是几cm?你能想象出这个长方体中含有多少个1cm的小正方体吗?自己先试一试。

反馈:这个长方体的体积是多少cm?你是怎样想的?(学生的回答后,出示图3)

提问:如果用的小正方体来摆第3个长方体,沿着长一排可以摆几个?沿着宽可以摆几排?沿着高可以摆几层?它的体积可以怎样计算?

再问:如果有一个长方体,长5cm,宽4cm,高3cm,摆出这个长方体一共要用多少个1cm的正方体?它的体积是多少cm?

引导学生用示意图表示出思考过程。

[设计意图:对三个长方体的探究,引导学生经历了“想象—画图—说理”的过程,使学生随着排数、层数的递增,清晰地体会到长方体的体积与它的长、宽、高的关系。第4个长方体只给出了长、宽、高的数据,意在促使让学生依托已经获得的直观经验,将摆的过程内化为有序地算(数)的过程。至止,长方体体积计算方法已呼之欲出。]

四、引导概括,得出公式

提问:通过刚才的活动,你认为长方体的体积与它的长、宽、高有什么关系?我们前面提出的猜想正确吗?

揭示长方体的体积公式,指出:以后我们可以直接用公式计算长方体的体积。

讲解:如果用V表示长方体的体积,a、b、h分别表示长方体的长、宽、高,你能用字母表示出长方体的体积公式吗?

板书:V=abh。

和同桌说一说你还知道了什么?

让学生口算各题的得数,并交流计算时的思考过程。

五、巩固练习,应用拓展

1.完成“试一试”。

出示长方体的包装盒,谈话:刚开始上课,我们还不能求这个包装盒的体积是多少,现在你能解决了吗?要求这个长方体包装盒的体积,需要知道哪些条件?有办法知道这些数据吗?

指导测量、记录数据后独立解答。

出示正方体的包装盒,这是一个棱长12cm的正方体纸盒,它的体积是多少cm?

学生独立完成后,组织反馈。

2.完成第26页“练一练”第1题。

先让学生看图说一说每个长方体或正方体的长、宽、高(或棱长)各是多少cm,再口算出它们的体积,并数一数每个立体图形是由多少个1cm的小正方体摆成的。

3.完成练习六第2题。

出示题目,让学生自由读题。

提问:计算冷藏车的容积,为什么要从里面量?

学生独立完成计算,并组织反馈。

六、全课小结,梳理学法

提问:今天,我们一起学习了什么?通过这节课的学习,你有哪些收获?回顾这堂课的学习过程,我们是怎样探索出长方体的体积公式的?

七、课堂作业

练习六第1题。

《长方体的体积教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式