有理数的乘法说课稿
作为一名为他人授业解惑的教育工作者,时常需要用到说课稿,说课稿有助于顺利而有效地开展教学活动。说课稿应该怎么写呢?以下是小编收集整理的有理数的乘法说课稿,仅供参考,希望能够帮助到大家。
有理数的乘法说课稿1一、教材分析
本节是在学习了有理数加法和减法的基础上,进一步将有理数加减混合运算统一成加法运算,并通过省略加号、括号,得出省略括号的代数和形式,对于有理数加减混合运算,首先要将混合运算的式子写成省略括号的代数和的形式,然后按加法法则和运算律进行简便运算。本节内容把有理数的加减混合运算融入实际问题中,既提高了学生学习数学的积极性,又突出了《标准》对本节内容的特别要求。
二、学情分析
学生是在学习了有理数的乘法第一课时的基础上来学习这一节内容的。学生在本节内容的学习中可能存在以下方面的困难:
(1)学生有理数乘法的法则、运算律记忆不牢固;
(2)在实际做题中不能灵活运用乘法运算律;
(3)在运用乘法运算律的过程中不能准确确定每一步运算符号,尤其是乘法的分配律。
三、设计思路
本节课我采用“引导—合作—探究”的教学模式,从实际问题出发,通过创设问题情境,提出探究任务,让学生自主探究解决问题,并在解决问题的过程中发现新问题,并能提出创造性的想法。让学生体验探究的全过程,充分体现学生的主体地位,激发学生学习兴趣,培养学生创新精神和合作能力。
四、教学目标
按照课程标准,本节的教学目标如下:
1、知识与技能
熟练有理数的乘法运算并能用乘法运算律简化运算。
2、过程与方法
让学生通过观察、思考、探究、讨论,主动地进行学习。
3、情感态度与价值观
培养学生语言表达能力以及与他人沟通、交往能力,使其逐渐热爱数学这门课程。
五、教学重点和难点
教学重点:
运用运算律,使运算简化
教学难点:
正确运用运算律,使运算简化
六、教学方法
教法:主要采用实验探究法、谈话法、讨论法、多媒体辅助教学法。让学生通过自己动脑思考,同学之间相互讨论,来学习有理数的加减混合运算,培养学生的分析、综合能力以及探索能力和合作精神,有效地突出重点,突破难点。让学生最大限度地参与到学习的全过程。
学法:
小组合作探究法:
以小组讨论为模式,积极参与合作探究,在小组合作探究中认真思考,操作,讨论,学会合作交流,培养借助团队力量解决自己无法完成问题的团队合作意识。
七、教具及电教手段
电子白板、多媒体课件
八、教学过程
一、做练习复习乘法法则导入
在做练习时我们看到如果像小学一样能利用乘法的交换律和结合
计算:
(1)5×(—6);(4)(—6)×5;
(2)[3×(—4)]×(—5);(3)3×[(—4)×(—5)];
(4)5×[3+(—7)];(5)5×3+5×(—7).
教师指出,由上面计算结果,可以说明有理数乘法也同样有交换律,结合律和分配律,并让学生分别用文字叙述和含字母的代数式表达三种运算律.
二、探究学习乘法运算律:
(1)乘法交换律
文字叙述:两个数相乘,交换因数的位置,积不变。
代数式表达:ab=ba。
(2)乘法结合律
文字叙述:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。
代数式表达:(ab)c=a(bc)。
(3)乘法分配律
文字叙述:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
代数式表达:a(b+c)=ab+ac。
提问:这里为什么只说“和”呢?3×(5—7)能不能利用分配律?
答:这里的“和”不再是小学中说的“和”的概念,而是指“代数和”,3 ×(5—7)可以看成3乘以5与—7的和,当然可利用分配律。
提问:如何表达三个以上有理数相乘或一个数乘以几个有理数的和时的运算律?
答:乘法交换律:abc=cab=bca,或者说任意交换因数的位置,积不变;
乘法结合律:a(bc)d=a(bcd)=……,或者说任意先乘其中几个因数,积不变;
分配律:a(b+c+d+…+m)=ab+ac+ad+…+am,再把所得的积相加。
继而教师作如下小结:
(1)小学学习的乘法运算律都适用于有理数乘法。
(2)我们研究数,总是由数的意义、数的认识(读、写、大小比较等)到数的运算和数的运算律这样一个顺序进行,小学学习的正数和0是这样,现在学习有理数也是这样,将来进一步学习范围更大的数还是这样。掌握了学习的方法,就掌握了自学的钥匙,希望予以注意。
三、课堂练习
计算(能简便的尽量简便):
(5)(—23)×(—48)×216×0×(—2);
(6)(—9)×(—48)+(—9)×48;
(7)24×(—17)+24×(—9).
四、小结
教师指导学生看书,精读多个有理数乘法的法则及乘法运算律,并强调运算过程中应该注意的问题.
五、练习设计
1.计算:
(7)(—7。33)×42。07+(—2。07)(—7。33);
(8)(—53。02)(—69。3)+(—130。7)(—5。02);
六、布置作业:
《伴你学》有理数的乘法第二课时
九、板书设计:
(一)乘法交换律:a×b=b×a
乘法结合律:[a×b]×c与a×[b×c]
乘法分配律:(a+b)×c=a×c+b×c
(二)典例示范:
十、教学反思:
在以上设计中,我力求体现“以学生发展为本”的教学理念,突出数学学科学以致用的特征,积极倡导“自主探究”的学习方式,让学生在开放而富有创新活力的氛围中学习,从而落实学生的主体地位,促进学生主动自主学习。
本节课教学的基本目的是让学生掌握有理数乘法的符号法则和运算律.为完成这一教学目标,可以采用直接传授的方法,即教师清楚明白地把乘法的符号法则和乘法的运算律告诉学生,然后通过做习题来加以巩固。这种教学方法具有直截了当的特点,但不利于开启学生思维,更不易使学生在接受知识的同时,提高观察、归纳和概括的能力.因此,我们采取了上述作法。
……此处隐藏3833个字……00.
2、把问题1中的"老虎从东西两个方向以每分钟100米的速度前进"改为"一只小虫从东西方向的跑道以每分钟3米的速度前进",结果有何变化?大家写出算式:(+3)×(+2)=6,(-3)×(+2)=-6比较这两个算式,有什么发现?
当我们把(+3)×(+2)=6中的一个因数"3"换成它的相反数"-3",所得的积是原来积"6"的相反数"-6".再看上一题得到的算式100×2=200,(-100)×2=-200,一般地, "一个因数换成它的相反数所得的积是原来积的相反数".
3、引导学生观察所得的两个算式的不同,通过小组协作探究3×(-2),(-3)×(-2),(-3)×0,怎么求,有几种求法,展现学生思维的多样性与广阔性,培养学生创新意识。
4、让同学多写几个两有理数相乘的算式,小组讨论,试着归纳出正数乘正数,正数与负数相乘积的符号及积的绝对值如何确定,直观得出两个有理数相乘的符号法则,类型,规律。老师再用图象符号显示出来,使学生深刻理解两个有理数相乘的符号法则:"同号得正,异号得负"进而帮助学生结合绝对值的算术关系归纳得出有理数的乘法法则,并用屏幕显示"两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零".随后应用此法则计算,讲解课本上的P51例题。
例1(1)(-5)×(-6);(2)(-1/2)×1/4;并补充(3)
解:(1)(-5)×(-6)=+(5×6)=30;
(2)(-1/2)×1/4=-(-1/2×1/4)=-1/8;
(3) =-(5/3×12/5)=-4
强调学生应用乘法法则时注意两点
(1)先确定积的符号
(2)定积的绝对值即绝对值相乘。使学生轻松解决本节课所提出来的重点问题及本节课的难点。
(三)小组交流,练习巩固,演绎应用所学的知识。
让同学做书上的配套练习P52的1、2、3,演绎应用有理数的乘法法则。通过小组讨论,推选代表解答,并回答老师的现场提问,活跃课堂气氛,增强学习积极性与集体荣誉感。使学生在交流学习中体会成功的`喜悦。
(四)分层次思维训练,使不同的学生得到不同的发展。
有理数的乘法说课稿4我说课的内容是七年级《数学》上册《有理数的乘法》的第1课时。下面我主要从教材分析、教学目标、教法与学法、教学过程分析四个方面进行说课:
一、 教材分析:
1. 教学内容:
本节教材设置了甲、乙两个水库的水位变化的现实情境,引导学生仔细观察一列算式的因数与积的变化规律,使他们自己发现、探索出有理数的乘法法则,并能用自己的语言描术,由有理数的乘法的练习中引出倒数的概念,进一步探索出几个不等于零的有理数乘法的法则及乘法运算律,使同学们真正地掌握有理数的乘法运算。
2. 教材地位和作用:
“有理数的乘法(1)”占有十分重要的地位,它是前几课的延伸与拓展,是有理数除法运算的基础,也为今后学习有理数四则混合运算奠定了基础,具有很重要的地位。
二、 教学目标:
1. 能力目标:经常探索有理数乘法法则,发展观察、归纳、猜想、验证等能力。
知识目标:会运用有理数的乘法法则熟练地进行有理数的乘法运算。
2. 教学重难点:
本节的重点即为经历探索有理数乘法法则运算律的过程,发展学生观察、归纳、猜测、验证等能力,使学生在理解记忆乘法法则的基础上会熟练地进行有理数的乘法运算。难点是确定多个不等于零的有理数相乘的积的符号,及有一个为零时积的情况。
三、 教法与学法:
1. 教法:
采取师生互动方式,并将分析、观察、验证相结合。通过学生主动性学习,教师的指导,练习的巩固层层展开教学,激发学生的求知愿望,让学生更好地理解和接受新知识。
2. 学法:
事先让学生预习,有不懂的再在课堂上在教师引导下弄懂。学生在教师引导下进行观察、归纳、猜想、验证,并通过练习及时巩固新学知识,能熟练地进行乘法运算。
四、 教学过程分析:
1. 导入过程:
利用课本的问题的案例来导入,既让学生感受数学与生活实际问题的联系,又让学生在解决问题的过程中回顾小学已学过的乘法知识,为后面学习负有理数的乘法做铺垫。
2. 探索新知过程:
首先,我引用课本的议一议和猜一猜中的两组式子,逐步引导学生发现其中规律,猜出结果,并自己归纳出乘法法则。其中利用导入中所书写的式子,节省课堂时间。
对于例题的选取,我先了两个例题,例题共五个小题,我先示范做一个题,其余让学生尝试用刚学的知识自己解决,这样做的目的是先示范做题的步骤和格式,再查看学生是否能正确运用乘法法则进行计算。其中还利用例1引入有理数中倒数的概念。在例题的选取中,我还有意挑选了不同的题型的乘法计算题:例1是两个数相乘的,(1)小题是一负一正相乘,(2)小题是两个负整数相乘,(3)小题是两个负分数相乘的;例2是三个数相乘的,(1)小题含一个负数,(2)小题含2个负数。这样做既可让学生了解不同题型,也为后面的教学做了准备。我还利用例2的第2小题添加“0”改变题目,让学生了解有一个因数为0时,积是0,我认为这样不但让学生了解了知识,也节省了课堂时间。
对于乘法中确定符号的问题,我引导学生通过对例题中式子的观察,以及对原有乘法知识的回顾,提示学生留意各个式子中负数的个数,引导学生发现规律,解决课本76页议一议中的积的符号的确定问题。
3. 随堂练习:
在课堂练习题的选取中,我也有意选择了多种题型加以巩固,并增加了一个两个数的和与第三个数相乘的题型,让学生再次了解要先计算小括号中的加法,明确此类题型的计算顺序。
4. 小结:
以提问的形式大致回顾本节所学的内容,主要问了三个问题:
(1) 这节课我们主要学习了些什么内容?
(2) 有理数的乘法法则是什么?
(3) 什么样的数互为倒数?
5. 作业:
作业我同样选取不同题型的五个计算题,目的是想查看学生学的效果如何,是否对哪类题型还留有疑问。
6. 自我评价:
这堂课我觉得满意的,是能够利用短暂的45分钟把要学的知识穿插在学与练当中,充分地利用了课堂有限的时间,并且能让学生边学边练,及时巩固。
当然这堂课也有很多不足之处,我觉得自己对于课堂上学生做练习时出现的一些小问题处理还没有能够处理得很好,我应该吸取经验教训,再以后的教学中加以改进。
另外对于多个有理数相乘时的符号问题,我觉得自己归纳得还不是很到位,我想解决的办法是在以后的练习中再做些补充,让学生加深理解。从中我也得到一个教训,再以后的教学工作中,我还应该多学习教学方法,多思考如何归纳知识点,才能更好地帮学生形成一个系统的知识系统!